Entry Task: Differentiate

1.
$$F(x) = \frac{7}{x^{10}} - 5\sqrt{x^3} + 4\ln(x) = 7 \times^{-10} - 5 \times^{3/2} + 4\ln(x)$$

2.
$$G(x) = e^{6x} + 5\tan(x) + \pi$$

3.
$$H(x) = 2 \tan^{-1}(x) - 3 + e$$

4.
$$J(x) = x^3 \cos(4x) + \ln(2)$$

$$\boxed{3} H(x) = 2 \frac{1}{1+x^{2}} - 0 + 0 = \frac{2}{1+x^{2}}$$

$$[4] J'(x) = 3x^2 cas(4x) - 4x^2 s_{-} |4x| + 0$$

4.9 Antiderivatives

Goal: Before we jump into defining integrals (ch. 5), we need to remember some derivatives (in reverse).

Def'n: If g(x) = f'(x), then we say g(x) ="the derivative of f(x)", and f(x) ="an antiderivative of g(x)"

Example:

Give an antiderivative of $g(x) = x^2$.

Now try
$$G(x) = \frac{1}{3}x^{3}$$
CHECK: $S'(x) = \frac{1}{3}3x^{2} = x^{2}$

$$G(x) = \frac{1}{3}x^{3} \text{ IS ONE ANTIDENWARKE}$$

GENERAL ANTIDERIVATIVE

IS
$$G(x) = \frac{1}{3}x^3 + C$$
 where C is a constant

4.9: LIST OF GENERAL ANTIDERIVATIVES

FUNCTION

ANTIDERIVATIVE

FONCTION ANTIDERIVATIVE
$$f(x) = x^{n} \ (n \neq -1) \qquad F(x) = \frac{1}{n+1}x^{n+1} + C$$

$$f(x) = x^{-1} = \frac{1}{x} \qquad F(x) = \ln|x| + C$$

$$f(x) = e^{x} \qquad F(x) = e^{x} + C$$

$$f(x) = \cos(x) \qquad F(x) = \sin(x) + C$$

$$f(x) = \sec^{2}(x) \qquad F(x) = \tan(x) + C$$

$$f(x) = \sec(x) \tan(x) \qquad F(x) = \sec(x) + C$$

$$f(x) = \sin(x) \qquad F(x) = -\cos(x) + C$$

$$f(x) = \csc^{2}(x) \qquad F(x) = -\cot(x) + C$$

$$f(x) = \csc(x) \cot(x) \qquad F(x) = -\csc(x) + C$$

$$f(x) = \frac{1}{1+x^{2}} \qquad F(x) = \tan^{-1}(x) + C$$

Examples (you do):

Find the general antiderivative of

1.
$$f(x) = x^6$$

2.
$$g(x) = \cos(x) + \frac{1}{x} + e^x + \frac{1}{1+x^2}$$

3.
$$h(x) = \frac{5}{\sqrt{x}} + \sqrt[3]{x^2} = 5 \times^{-1/2} + 1 \times^{3/2}$$

4.
$$r(x) = \frac{x-3x^2}{x^3} = \frac{x}{x^3} - \frac{3x^2}{x^2} = \frac{1}{x^2} - \frac{3}{x} = \frac{1}{x^3} - \frac{3}{x} = \frac{1}{x^3}$$

Initial Conditions

There is no way to know what "C" is unless we are given additional information about the antiderivative. Such information is called an **initial** condition.

Example:
$$f'(x) = e^x + 4x$$
 and $f(0) = 5$

Find f(x).

(STEP I)
$$F(x) = e^{x} + 4 \pm x^{2} + C$$
 $F(x) = e^{x} + 2x^{2} + C$

(STEP I) $f(0) = S$
 $f(x) = e^{(0)} + 2(0)^{2} + C = S$
 $f(x) = e^{(0)} + 2x^{2} + C$

(CHECK)

 $f(x) = e^{x} + 2x^{2} + C$

Example:
$$f''(x) = 15\sqrt{x}$$
, and
$$f(1) = 0, f(4) = 1$$
 Find $f(x)$.

$$\begin{array}{c|c}
STEP 2 \\
f(x) = 10(\frac{2}{5}x^{52}) + C \times + D \\
f(x) = 4x^{52} + C \times + D \\
\hline
STEP 3 \\
f(1) = 0 \Rightarrow 4(1)^{52} + C(1) + D = 0 \\
\Rightarrow 4 + C + D = 0 \Rightarrow D = (-4 - C)
\end{array}$$

$$f(4) = 1 \Rightarrow 4(4)^{5/2} + C(4) + 0 = 1$$

$$128 + 4C + 0 = 1$$

$$128 + 4 + (-4-4) = 1$$

$$3 = -123$$

$$C = -\frac{123}{3} = -41$$

$$D = 223$$

$$3 = -41$$

Motivational: You know the acceleration or velocity function for some object. What is the original function for the position of the object?

Example:

Ron steps off the 10 meter high dive at his local pool. Find a formula for his height above the water.

(Assume his acceleration is a constant 9.8 m/s² downward)

$$h(t) = height at the t seconds$$
 $h(0) = 10$
 $v(0) = 0 = initial velocity$
 $a(t) = -9.8$
 $h''(t) = -9.8$
 $h''(t) = -9.8$
 $h''(t) = -9.8 + C$
 $h'(t) = -4.9 + C + C$
 $h(t) = 0 = 0 -9.8(0) + C = 0 = C = 0$
 $h(0) = 10 = 0 -9.8(0) + D = 10 = 0 = 10$
 $h(t) = -4.9 + C + C$